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Abstract. Machida found in tracking studies [Shinji Machida, presentation at the FFAG05 Workshop, Kyoto University
Research Reactor Institute, Osaka, Japan, 5–9 December 2005] thatthe time of flight in a linear non-scaling FFAG depended
on the transverse amplitude of the particles. I compute a relationship between the transverse amplitude dependence of the time
of flight and the variation of tune with energy and explain its physical origin.
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When doing tracking studies for linear non-scaling FFAGs, Machida [1] found that particles with large enough
transverse amplitude did not get accelerated in a linear non-scaling FFAG. He found that this was likely caused by a
dependence of the time of flight in the FFAG on the transverse amplitude (Fig. 1).

It turns out that there is necessarily a relationship between the variation of the time of flight with transverse amplitude
and the variation of the tune with energy. This relationshipcan be straightforwardly computed. First of all, one finds the
closed orbit

(

x0(s,E), px0(s,E),y0(s,E), py0(s,E)
)

in the machine without RF as a function of the energyE, and the
linear map about the closed orbit. One can then make a change of phase space variables into “normalized” variables,
where the Hamiltonain can be written as

H = H0(s,E)+
∂ψx(s,E)

∂ s
Jx +

∂ψy(s,E)

∂ s
Jy +O(J3/2

x )+O(J3/2
y ), (1)

whereJx andJy are defined for an uncoupled system as usual as

Jx =
1
2

(

γx(s,E)x̄2 +2αx(s,E)x̄ p̄x +βx(s,E)p̄2
x

)

Jy =
1
2

(

γy(s,E)ȳ2 +2αy(s,E)ȳ p̄y +βy(s,E)p̄2
y

)

(2)

x = x̄+ x0(s,E) y = ȳ+ y0(s,E) px = p̄x + px0(s,E) py = p̄y + py0(s,E). (3)

Here βx,y(s,E), αx,y(s,E), and γx,y(s,E) are the Courant-Snyder functions, andψx,y(s,E) is the local phase ad-
vance, which is related to the tune for a system with periodL by ψx,y(s + L,E) − ψx,y(s,E) = 2πν(E). Other
than ψx,y(s,E), all of the above functions ofs are periodic ins with period L. Note that the usual scaling of the
Hamiltonian and the transverse momenta by the total momentum p =

√

E2/c2
− (mc)2 has occurred (m is the par-

ticle mass,c is the speed of light). In the more general case with coupling, one still transforms the Hamilton-
ain to (1), but now the transformation can be written more generally asz̄ = A(s,E)zN , with z̄ = (x̄, p̄x, ȳ, p̄y) and
zN = (

√

2Jx cosθx,−
√

2Jx sinθx,
√

2Jy cosθy,−
√

2Jy sinθy). As long as the motion is stable at the energyE, it is al-
ways possible to do this transformation. As part of this transformation, the time of flightt was transformed to a new
time of flight tN :

t = tN + p
∂ px0

∂E
x̄− p

∂x0

∂E
p̄x + p

∂ py0

∂E
ȳ− p

∂y0

∂E
p̄y +

p
2

zT
NAT (s,E)S

∂A(s,E)

∂E
zN . (4)

Note thatt differs fromtN only by a periodic function ofs. HereS is the matrix of the symplectic metric,

S =







0 1 0 0
0 −1 0 0
0 0 0 1
0 0 −1 0






(5)

Now, consider the the quantityT = t(s + L)− t(s), the time of flight through one period of the lattice. For linear
oscillations about the energy-dependent closed orbit, this is just tN(s + L)− tN(s) plus terms that are oscillatory
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FIGURE 1. Relationship between time of flight and transverse amplitude [1]. The legend indicates an initial transverse displace-
ment for the corresponding time of flight curves. Results were based on tracking and averaging out the oscillatory pieces.

FIGURE 2. Betatron oscillations, showing longer path lengths for larger amplitude oscillations.

functions of the angle variablesθx andθy. We can computetN(s+L)− tN(s) from Hamilton’s equations of motion:

tN(s+L)− tN(s) = −p
∫ L

0

∂H
∂E

ds = −p
∫ s+L

s

∂H0(s,E)

∂E
ds−2π p

dνx

dE
Jx −2π p

dνy

dE
Jy +O(J3/2

x )+O(J3/2
y ). (6)

The first term on the right hand side is the time of flight for a period along the closed orbit. The next two terms are
the interesting result; they show a relationship between the time-of-flight dependence on transverse amplitude and the
tune variation with energy.

What is the physical origin of this behavior? First, think about a straight beam line. For finite transverse oscillations,
the beam makes an angle with the axis (Fig. 2), and thus the path length (and therefore the time of flight) along
the particle trajectory increases as the square of the angle(and therefore linearly inJx,y). The tune decreases with
increasing energy (for large enough energy), while the pathlength increases with increasing transverse amplitude.

What about the result that correcting the chromaticity eliminates the time of flight variation with amplitude?
Consider a lattice with chromaticity correcting sextupoles. Assume a lattice with positive dispersion and a phase
advance per cell of less thanπ. To make the horizontal chromaticity more positive, the gradient should become more
positive with increasingx. This means that the vertical field from the sextupoles should be a positive parabola in the
midplane. Now, consider horizontal betatron oscillations: the average field from the sextupole will not be zero, but
will be positive and proportional to the square of the maximum orbit displacement (in other words, proportional toJx).
This additional bending field will tend to reduce the orbit radius, decreasing the path length, and therefore decreasing
the time of flight. Similarly, to make the vertical chromaticity more positive, the vertical gradient of the horizontal
field should become more negative with increasingx. From the divergence equation in Maxwell’s equations, this
means that the vertical field should be a positive parabola iny. Again, that means that averaging over vertical betatron



oscillations, the average vertical field is positive and proportional toJy, displacing the beam to a smaller radius as with
the horizontal oscillations.

These physical explanations are not meant to be quantitative; Eq. (6) gives the quantitative result. The time of flight
dependence on transverse amplitude can thus be computed straightforwardly from the tunes for oscillations about the
closed orbit as a function of energy. These tunes are generally calculated early in the design process for an FFAG, and
so the importance of the time of flight dependence on transverse amplitude can be quickly computed.

We determined that the transverse amplitude dependence of the time of flight shown in Fig. 1 is correctly predicted
by Eq. (6).
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